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1 Introduction 

In the context of this deliverable, the analysis and evaluation of the results of the pilot tests 
and the performance evaluation of the data analysis techniques designed in the SmartWa-
ter2020 project will be presented. This includes the study of data verification and reconstruc-
tion methods, the assessment of hydraulic and quality status, the study of leak detection tech-
niques using pressure sensors and AMR, the study of dynamic PRV control and finally, the 
analysis of the performance of the LoRaWAN network. 

 

2 Data Reconstruction (FORTH) 

 

2.1 Methodology 

Compressive sensing (CS) provides a powerful framework for simultaneous sensing and com-
pression, enabling a significant reduction in the sampling, computation, and transmission costs 
on a sensor node with limited memory and power resources. In the framework of SmartWa-
ter2020, CS is exploited as an efficient data, specifically pressure, compression mechanism, im-
plemented at the edges of the network, whilst the decompression takes place at the control center 
where increased computational resources are available. A typical CS-based system consists of 
two distinct modules according to the functionality they perform, namely, the compressor and 
decompressor. The compression module (or encoder) is responsible for generating a reduced set 
of random measurements from the observed data. 

 

Figure 1: Flow diagram of a CS-based system. 

More specifically, let  𝚿 ∈ ℝ𝑁×𝑃 be a matrix whose columns correspond to a possibly overcom-

plete (i.e., N < P) transform basis. Let  𝐱 ∈ ℝ𝑁 be an observed discrete-time signal of N samples, 

which is associated to a transform coefficients’ vector  𝐚 ∈ ℝ𝑃 over the basis Ψ, as follows 

𝐚 = 𝚿𝐱 . 

In terms of signal approximation, it has been demonstrated that, if a signal x is sparse or com-

pressible in a basis Ψ, then it can be reconstructed from a highly reduced set of M << N non-

adaptive linear projections, where 𝑀 = 𝑶 (𝑆 𝐥𝐨𝐠 (
𝑁

𝑆
)), where S is the signal’s sparsity. From a 

practical perspective, instead of transmitting the originally observed N samples of x, a sensor 
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reduces its consumed energy by only transmitting this significantly smaller number of M projec-
tions to the control center, where the original signal can be recovered with high accuracy for 
further processing. The random measurements vector 𝐲 ∈ ℝ𝑀 is generated simply as follows, 

 

where 𝚽 ∈ ℝ𝑀×𝑁 is a measurement matrix, which must be incoherent with the sparsity basis Ψ. 
In mathematical terms, let  

 

 

denote the mutual coherence between Φ and Ψ, where 𝝓𝑖 and 𝝍𝑗 are the i-th row of Φ and j-th 

column of Ψ, respectively. The parameter μ serves as a rough characterization of the degree of 

similarity between the sparsity and measurement systems. The smaller the μ is, the more inco-
herent the two matrices are. 

In practice, the system operator is responsible for defining the appropriate number of measure-
ments by setting the value of the sampling rate (SR), which is simply the ratio of the number of 

random measurements over the original signal length, that is, SR =
M

N
. Given that M << N, the 

computational and power savings of each sensor node stem from the fact that they process and 
transmit a highly compressed signal instead of the original x. To be consistent with lossless com-
pression, hereafter we also use compression rate (CR) as the input parameter to the compressive 
sensing, where CR = 1−SR. 

 

Function 1: Edge compression overview 

 

By employing the M random measurements and given the S-sparsity property in the transform 
basis, the original signal x can be recovered by taking a number of different approaches. In our 
implementation, the NESTA algorithm (Matlab code available at https://statweb.stan-
ford.edu/~candes/software/nesta/) is employed, which is shown to achieve a good trade-off be-
tween reconstruction accuracy and computational time. Focusing on the optimization problem to 
be solved for reconstructing the original data, NESTA solves the following synthesis-based prob-
lem,   

Function_1: edge_compression(x, SR, seed) 

 

Inputs:  

@x: The original pressure stream (bars) 

@SR: The sampling ratio value ([0.1, 0.9]) 

@seed: The random matrix generator 

 

Output:  

@y: The compressed signal (bars) 
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where 𝐚 ∈ ℝ𝑃  is a sparse coefficient vector, ‖·‖1 and ‖·‖2 denote the l1 and l2 norm, respectively, 

and δ > 0 is a small threshold (𝛿 = 10−3 in our implementation). Having estimated the sparse 
coefficient vector, �̂�, a reconstruction of the original signal is simply obtained by taking the inver-
setransform, that is, 

 

The short-time Fourier transform (STFT), along with scrambled block Hadamard ensembles are 
utilized in our CS-based system in place of the sparsifying transformation Ψ and random meas-
urement matrix Φ, respectively. 

 

Function_2: control_decompression(y, seed) 

 

Inputs:  

@y: The compressed pressure stream (bars) 

@seed: The random matrix generator 

 

Output:  

@𝑥:  The decompressed signal (bars) 

Function 2: Control decompression overview 

2.2 DEYAM Pilot 

 

2.2.1 CS Vanilla-flavored 

The subsequent performance evaluation utilized real pressure data recorded by the smart wate 
management infrastructure of the Municipal Enterprise for Water Supply and Sewerage of Male-
vizi. Incoming and outgoing flow pressure measurements are sent to the control center at a fre-
quency of one sample (pressure expressed in Bars) per 15 min, yielding approximately 9000 
observations per sensor. This sampling frequency suffices in order to enable real-time monitoring 
of the water distribution network of the municipality of Malevizi, which is divided into 10 zones, 
each monitored by a pressure sensor. 

In our system, the reconstruction error is measured in terms of the signal-to-error ratio (SER) (in 
dB) between the original and reconstructed signals x and �̂�, respectively, defined by 

 

The figure below shows the original along with the three reconstructed streams. 
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Figure 2: Original and reconstructed streams 

 

As it can be seen, the reconstruction quality improves as the SR increases, as expected. Most 
importantly, the reconstruction is already accurate enough even for SR = 25%, except for some 
sharper details (see region in the red circle) that cannot be captured accurately when the number 
of random measurements M is small. Nevertheless, these details can be recovered very accu-
rately as the SR slightly increases (see SR = 50%). 

As a second illustration, the figure below shows a part of an original pressure stream of a sensor 
from DEYAM pilots, under abnormal network conditions. 
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Figure 3: Part of an original pressure stream of a sensor from DEYAM pilots, under abnormal network 
conditions 

2.2.2 CS weak encryption 

In the subsequent analysis, we evaluate the weak encryption capability of a CS-based system by 
simulating the following adversarial scenario, as shown in Figure 4. Specifically, we assume that 
an adversary does not have access to the true original measurement matrix Φ that generated the 
compressed stream, but to a permutation of its rows. This scenario is simulated easily as follows, 

 

where yA is the random measurements vector generated by the adversary and  𝐏𝑀 ∈ ℝ𝑀×𝑀 is a 
permutation matrix which models the imperfect knowledge of the true Φ on behalf of the adver-
sary. In the subsequent evaluation, the percentage of permuted rows of the original measurement 
matrix is defined by p ϵ [0.2, 0.4, 0.6, 0.8, 1], where, for each p value, ⌊𝑝𝑀⌋ randomly selected 
rows are permuted while the remaining rows are left in the original position. When a legitimate 
system operator receives the compressed measurements, we assume that the permutation matrix 
is equivalent to the identity matrix, i.e., 𝐏𝑀   =  𝐈. 
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Figure 4: Adversarial scenario demonstrating the weak encryption property of a CS-based system. 

The figures below show the reconstruction error, in terms of the achieved SER (in dB) averaged 
over all the pressure sensors, for sliding windows of length 𝑁 ∈  {64, 128, 256}, as a function of 

p, for the three sampling ratios 𝑆𝑅 ∈ {25%, 50%, 75%} (or, equivalently, compression ratios 𝐶𝑅 ∈
{75%, 50%, 25%}. Clearly, the reconstruction accuracy deteriorates dramatically, as p increases, 
for all the window lengths and sampling ratios, which verifies the weak encryption capability of 
CS. The difference in performance between the original and permuted Φ especially increases as 

the sampling ratio and window length increase. Furthermore, the larger the window length N and 
the smaller the CR (i.e., the higher is the SR), the better is the reconstruction performance (i.e., 
higher SER), as expected. 
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Figure 5: The reconstruction error, in terms of the achieved SER (in dB) averaged over all the pres-
sure sensors, for sliding windows of length 𝑁 ∈  {64, 128, 256}, as a function of p, for the three sam-

pling ratios 𝑆𝑅 ∈ {25%, 50%, 75%} (or, equivalently, compression ratios 𝐶𝑅 ∈ {75%, 50%, 25%} 

 

2.2.3 CS Execution Time and Power Consumption  

As an additional experiment, we evaluate the efficiency of the CS-based mechanism for data 
compression and transmission in DEYAM system and illustrate the execution speedup and en-
ergy consumption reduction it offers when compared against a well-established lossless com-
pression method that is widely used in commercial solutions, namely, the LZ77 algorithm. We 
also quantify the energy savings achieved over the scenario of raw (uncompressed) sensor value 
transmission. 

The experimental setup parameters are summarized in the table below. 
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Table 1: The experimental setup parameters 

 

 

To evaluate the effect of different compression types to the performance metrics defined here, 
we followed a statistical-based approach. Due to lack of normality in our dataset (as reported by 
Shapiro–Wilk test), we applied the non-parametric Kruskal–Wallis test, followed by Dunn post hoc 
test for pairwise comparisons of compression types, in the case a significant difference in the 
means exists. 

The figure below shows the average and standard deviation of Compression Execution Time 
(CET), over the total number of pressure blocks, for different compression types. 

 

 

Figure 6: The average and standard deviation of Compression Execution Time (CET), over the total 
number of pressure blocks, for different compression types. 
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The average and standard deviation of Transmission Energy Consumption (TEC) is shown in the 
next figure, over the total number of pressure blocks, for different compression types. 

 

 

Figure 7: The average and standard deviation of Transmission Energy Consumption (TEC) 

 

2.3 Conclusions 
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3 Hydraulic State Estimation (KIOS) 

The “Hydraulic State Estimation” algorithm combines the available measurement data from the 
SCADA system with the WDN model data (network topology, asset data, etc.) and extrapolates 
the complete system state, i.e., water flows in every pipe, consumer waters demand, pressures 
at each node and tank water levels. A complete view of the network state supports the decision-
making process and enables the efficient operation of these systems, improves customer service, 
and enables the early detection of emergency events, thus minimizing their impact. A demand 
calibration method is integrated in this algorithm in order to achieve a better matching between 
the measured and the predicted pressures and flows. 

 

3.1 Methodology 

The hydraulic state estimation process is carried out in the steps described below. 

 

3.1.1 Creation and selection of hydraulic model 

Hydraulic models of the network are created using GIS and CAD representations of the network 
provided by the water utilities. These include the available information regarding the topology and 
the hydraulic characteristics of each network component.  

An estimated water consumption is allocated at each network node, which is calculated based on 
historical billing data. Moreover, the average water demand of each DMA is estimated using the 
DMA inflow measurements and then distributed to each building of this area based on its type, 
area and number of floors. Since information of the actual location of each consumption node is 
not available, each building’s water demand was reallocated to the nearest node using “Voronoi 
polygons”.  

The initial (non-calibrated) hydraulic model of each DMA network are stored in a database and 
the user can select the appropriate model to perform state estimation. 

 

3.1.2 Measurement data retrieval and validation 

Hydraulic sensors have been installed at the inlet point of each DMA network (measuring pres-
sure and flow) and at strategic locations inside the network (measuring pressure). Through a 
Graphical User Interface (GUI) the user can select the desired time period for which all measure-
ments from hydraulic sensors installed in the selected water network are retrieved from the 
SCADA system (Figure 8: Graphical User Interface for selecting the desired time period for hy-
draulic-state estimation (Figure 8).  

The retrieved sensor data are then pre-processed in order to detect outliers which may be the 
result of communication of sensor faults. Missing data points due to outliers or communication 
faults are recreated using interpolation of the available data points. 

 

3.1.3 Hydraulic model calibration using sensor data 

The available sensor measurements are first used to calibrate the available hydraulic model.  

The first calibration step is to calibrate consumer demands. Due to the absence of knowledge of 
the actual consumption patterns at every node of the network, the inlet flow measurement and 
AMR measurements (wherever they are available) are used to generate and assign demand pat-
terns to the corresponding consumption nodes of the model. The demand pattern time-step is the 
same as the sensor measurements time-step. The demand pattern 𝑝𝑎𝑡𝑖 for node 𝑖 with base 
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demand 𝑏𝑑𝑖 at discrete time-step 𝑘 and given the inlet flow measurement 𝑞𝑖𝑛 is calculated as 
follows:  

pati(k) =
𝑏𝑑𝑖

∑ 𝑏𝑑𝑗𝑗
𝑞𝑖𝑛(𝑘) 

Moreover, the inlet pressure measurements is used to create and assign a pressure pattern at 

the inlet point of the DMA network model.  

 

The second calibration step is to calibrate model parameters by incorporating into the procedure 

the available pressure measurements. Using the assigned inlet pressure and demands for each 

node, the hydraulics of the DMA network are solved using the EPANET hydraulic solver to calcu-

late the flows and pressures at every pipe and node of the network respectively. 

Pressures measured by sensors are then compared with the corresponding simulated pressures 

in order to evaluate the accuracy of the model. By using the difference between the measured 

and estimated pressures, a calibration of network parameters is performed to increase model 

accuracy which includes: 

1. Redistribution of base demands. 

2. Checking model structure for closed pipes. 

3. Calibration of model parameters such as pipe roughness and node elevations. 

Note that if calibration of network parameters has been performed for an adequate amount of 

data, subsequent applications of the state estimation algorithm will not require the performance 

of this step. 

 

3.1.4 Hydraulic State Estimation 

Using the calibrated hydraulic model, the flows in pipes and pressures at nodes are estimated 
throughout the network using the acquired sensor measurements and by solving the network 
hydraulic equations using EPANET. 

 

Function 3: State estimation algorithm inputs and outputs 

Platform Communication: 

• Communicates with EPANET database and retrieves the selected input (.inp) file. 

Function: Hydraulic_State_Estimation(model, data ) 

Inputs:  

@model: Water network model  

@data: Flow and pressure measurements received from SCADA 

Output:  

@Calibrated_model: Inp. file of the calibrated water network 
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• Communicates with SCADA database and retrieves the required data for the selected period 

and the selected DMA/network. 

 

3.2 WBL Pilot 

The proposed hydraulic-state estimation methodology was applied on DMA 136 of the WDN of 
Limassol. The results of this pilot run are shown using sensor data from a one-week period be-
tween 12/10/2020 - 18/10/2020, however, any time period with available sensor data could have 
been selected. 

Initially the user selects the available network model from the database and states the time period 
for which to perform hydraulic-state estimation using measurements (Figure 8). In this case, the 
one-week period between 12/10/2020 - 18/10/2020 is selected. 

 

 

Figure 8: Graphical User Interface for selecting the desired time period for hydraulic-state estimation 

The algorithm connects with the online server receiving data from the SCADA system and obtains 

the required measured data for the period 12/10/2020 - 18/10/2020 in order to execute the hy-

draulic state estimation (Figure 9).  

The required data for the first step of the algorithm are the inlet flow and pressure of DMA 136 

and any available AMR measurements. In this DMA, there are 2 AMR sensors located at the 

KEAN factory measuring its consumption and can be used for a better calibration of the hydraulic 

model (Figure 9). 
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Figure 9: Measured inlet flow, inlet pressure and KEAN factory consumption of DMA 136 received from 
installed sensors for the period 12-18/10/2020. 

 

Consumer demand calibration in the hydraulic model is performed by using the inlet flow and inlet 

pressure measurements of DMA 136 (Figure 10) and the KEAN factory consumption (Figure 11).  

These measurements were downloaded from the SCADA system and used to calibrate the de-
mands in the hydraulic model, as seen in Figure 12. 
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Figure 10: Measured inlet flow (a) and pressure (b) of DMA 136 for the period 12-18/10/2020 

 

  

Figure 11: Measured consumption (m3/h) by two AMR sensors located at KEAN factory in DMA 136 for 
the period 12-18/10/2020 (a)-(b), and the total consumption at KEAN (c).  
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Figure 12: Calibrated hydraulic model of DMA 136 in EPANET, augmented with measurements from the 
inlet and KEAN obtained during the period 12-18/10/2020. 

 

The next step of this methodology was to compare the simulated and measured pressures from 
sensors located in this network which were not used in the demand calibration process in order 
to evaluate the accuracy of the calibrated model. A GIS map with the locations of the installed 
pressure sensors in DMA 136 is shown in Figure 13. 

In Figure 14 the measured (SCADA) and simulated (EPANET) pressure at nodes with installed 
sensors located at DMA 136 are presented. As can be seen in four cases (Pres136P1, 
Pres136P2, Pres136P4 and Pres136P5) the model accuracy is very high while in two cases 
(Pres136P3 and Pres136P6) is moderate. Regarding “Pres136P6” the pressure difference is fol-
lowing the same pattern meaning that either the actual sensor or a model parameter (node ele-
vation) should be calibrated. “Pres136P3” represents the pressure sensor installed near the 
KEAN factory where AMRs are also placed. According to the results, the simulated pressure 
matched with the measured after some time when the actual sensor was calibrated manually. 
Based on information from the WBL the specific sensor needs manual calibration since it is af-
fected form the large pipe flow of the pipe where it is installed due to the factory operation.  
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Figure 13: GIS map showing the location of the pressure sensors installed in DMA 136 

 

 

 

Figure 14: Measured (SCADA) and estimated (EPANET) pressure from various sensors located in DMA 
136 for the simulation period 12-18/10/2020 
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3.3 WDD Pilot 

The proposed methodology was applied at the main pipeline of the WDD network from Larnaca 

to Dekheleia area (Figure 15). The objective is to create a hydraulic model of the network and 

estimate the complete system state. The network operates under different conditions depending 

on the water needs of the supplied areas. Water is primarily pumped from the Tersephanou water 

treatment plant, however in periods of water shortage the Dekheleia desalination plant supple-

ment the water demand. As a result, when the desalination plant operates there can be flow 

reversal from Dekheleia to Larnaca in the main pipelines.  

Sixteen (16) AMR flow sensors (Figure 16) and six (6) pressure sensors (Figure 17) were installed 

along the pipeline pilot section. A list of the installed sensors in the WDD network is provided in 

Table 2. The flow sensors are located at the outlets of the main pipeline which supply water to 

nearby villages. In addition, two more pressure sensors are located at the Leivadia Pumping Sta-

tion which are connected to the server through the SCADA system. 

 

 

Figure 15: Map showing the main pipeline of the WDD connecting cities and villages located at south-east 
Cyprus. Circled is the pilot area. 
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Table 2: Sensor location, type and ID 

Name Latitude Longitude UID Type 

DAV_54A_Chlorine_Sensor 35.00918 33.71370 Anzio_Chlorine Chlorine 

Leivadia_Chlorine_Sensor 34.96728 33.64248 Leivadia_Chlorine Chlorine 

FM_KaloChorio_Sensor 34.92597 33.54118 W001 Flow 

FM_AradippouC_Sensor 34.94795 33.56950 W002 Flow 

FM_AradippouA_Sensor 34.94985 33.57478 W003 Flow 

FM_AradippouB_Sensor 34.95095 33.57900 W004 Flow 

FM_Avdelero_Sensor 34.97185 33.58307 W005 Flow 

FM_Troulloi_Sensor 34.97765 33.62106 W006 Flow 

FM_Kelia_Sensor 34.97775 33.62076 W007 Flow 

FM_LivadiaA_Sensor 34.96738 33.63815 W008 Flow 

FM_LivadiaB_Sensor 34.97016 33.64259 W009 Flow 

FM_OrokliniB_Sensor 34.97400 33.64981 W010 Flow 

FM_OrokliniA_Sensor 34.98280 33.66009 W011 Flow 

FM_PylaB_Sensor 35.00119 33.68145 W012 Flow 

FM_PylaA_Sensor 35.00710 33.70418 W013 Flow 

FM_DekehliaA_Sensor 35.00989 33.71109 W014 Flow 

FM_DekehliaB_Sensor 35.00990 33.71110 W015 Flow 

FM_KeliaTroulloi_Main_Sensor 34.96221 33.62606 W016 Flow 

DAV_36_Pressure_Sensor 34.94193 33.55619 DAV_36 Pressure 

DAV_39B_Pressure_Sensor 34.94933 33.57375 DAV_39B Pressure 

DAV_46_Pressure_Sensor 34.97074 33.64617 DAV_46 Pressure 

DAV_49_Pressure_Sensor 35.00004 33.67688 DAV_49 Pressure 

DAV_54A_Pressure_Sensor 35.00918 33.71370 DAV_54A Pressure 

DAV_Tremithos_Pressure_Sensor 34.89772 33.53957 DAV_Tremithos Pressure 
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Figure 16: Location of AMR flow sensors in the WDD network 

 

 

Figure 17: Location of pressure sensors in the WDD network 
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The hydraulic state estimation was utilized for the one-week period between 24/08/2020 - 

31/08/2020. The algorithm connects with the online server receiving data from the SCADA system 

and obtains the required measured data for the period 24/08/2020 - 31/08/2020 in order to exe-

cute the hydraulic state estimation. The data used for this pilot are the measured flows from each 

AMR (Figure 18) and the pressure measurements from the pump station located at Leivadia area 

(Figure 19). During the pilot phase period some of the AMRs were malfunctioning so an estimation 

of the hourly consumption was performed based on historical data.  

 

 

Figure 18: Measured flow from one of the AMR sensors located at WDD network for the period 24-
31/08/2020. 
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Figure 19: Measured upstream and downstream pressure at the Leivadia Pump Station for the period 24-
31/08/2020. Pump station was not operational during that time according to the general operational sce-
nario of the entire network. 

Initially, consumer demand calibration is performed using both flow measurements retrieved from 
the SCADA system and estimated consumptions (Figure 20). Then both the pressure and flow 
measurements are used to estimate the flow across the main pipeline and to calibrate the 
EPANET model (Figure 21). 
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Figure 20: Estimated consumption (m3/h) of the AMR sensors based on historical data. 

 

 

Figure 21: Calibrated hydraulic model of WDD main pipeline in EPANET, augmented with measurements 
from the AMR and pressure sensors during the period 24-31/08/2020. 
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3.4 Conclusions 

The results from the proposed methodology for hydraulic state estimation shows a high accuracy 
between the estimated and measured data. The main objective which was to predict and estimate 
the variation and periodic pattern of pressures and flows during selected periods was achieved. 
Differences between measured and estimated data were noticed indicating that calibration of the 
following parameters must be carried out more often: 

• Sensors 

• Model base demands 

• Model pipe parameters (Status and roughness) 

 

Sensors should be monitored by the corresponding water authorities and preserved in a good 
condition. The operation scheme including which pipes are open or closed should be updated 
regularly and specifically once a change is made on the network by the water authorities. Regard-
ing the base demand – uncertainty, a solution could be the placement of additional AMRs on large 
consumers in order to measure a part of the actual network consumption. 

 

4 Quality State Estimation (KIOS) 

‘Water Quality State Estimation’ refers here to the process of estimating chlorine concentration 
using measurements from chlorine sensors installed at specific locations in the WDN to extrapo-
lating the chlorine concentration at every location of the network. This is achieved using a water-
quality model of the network in conjunction with a hydraulic model, since the hydraulic dynamics 
in these systems affect the water-quality dynamics, as illustrated in Figure 22. An accurate hy-
draulic-state estimate is imperative to achieve accurate estimation of chlorine concentration and 
this is why the hydraulic-state estimation methodology described in Section 3 is used to create a 
calibrated hydraulic model and then proceed to the calibration of the water-quality model. 

 

Figure 22: Quality State Estimation process 

 

4.1 Methodology 

The water-quality state estimation process is divided in steps and described below. 

4.1.1 Hydraulic State Estimation 

The methodology in Section 3 is used to acquire the hydraulic-state estimates for the selected 

period of time. This is available in the form of a calibrated hydraulic model derived using hydraulic 

sensor measurements. This model contains approximate values of pipe parameters related to 

water-quality such as bulk chlorine reaction rate and pipe wall reaction rates. 
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4.1.2 Chlorine measurement data retrieval and validation 

Chlorine measurements from sensors located in the selected water network are retrieved through 

the platform. Through a Graphical User Interface (GUI) the user can select the desired time period 

for which all measurements from chlorine sensors installed in the selected water network are 

retrieved from the SCADA system. Chlorine sensors are typically located at the inlet point of each 

DMA network and at strategic locations inside the DMA network.   

The retrieved sensor data are then pre-processed in order to detect outliers which may be the 
result of communication of sensor faults. Missing data points due to outliers or communication 
faults are recreated using interpolation of the available data points. 

 

4.1.3 Water quality model creation and calibration 

The calibrated hydraulic model is used as a basis to create a calibrated water quality model.  

First, chlorine measurements at the inlet of the DMA network are augmented into the model by 

assigning the measured chlorine pattern at the inlet point of the model. To solve the first-order 

hyperbolic partial differential equations which describe chlorine transport and reaction in a WDN, 

the Lagrangian numerical approximation method implemented by the EPANET software is used. 

A water-quality simulation is performed using EPANET, for which the chlorine concentration at 

nodes and in pipes of the network is calculated based on the chlorine measurements at the inlet 

and the approximated reaction rate values that existed in the water-quality model. 

 

The second step is to calibrate the model reaction rates using the chlorine measurements that 

exist inside the network. This is achieved by calculating the difference between the estimated and 

measured chlorine concentration at sensor locations and then adjusting accordingly the bulk and 

wall reaction rates of the model until this difference is minimized. 

Note that if calibration of network parameters has been performed for an adequate amount of 

data, subsequent applications of the state estimation algorithm will not require the performance 

of this step. 

 

4.1.4 Water-quality state estimation 

Using the calibrated hydraulic and water-quality models, the chlorine concentration in pipes and 
at nodes are estimated throughout the network using the EPANET hydraulic and water-quality 
solver. 

 

Function 4: Quality State Estimation algorithm inputs and outputs 

Function: Chlorine_State_Estimation(model, data ) 

Inputs:  

@model: Hydraulic Calibrated water network model  

@data: Chlorine measurements received from SCADA 

Output:  

@Calibrated_model: Inp. file of the calibrated water network 
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Platform Communication: 

• Communicates with EPANET database and retrieves the selected inp file 

• Communicates with SCADA database and retrieves the required data for the selected period 

and the selected DMA/network  

 

4.2 WBL Pilot 

The proposed water-quality-state estimation methodology was applied on DMA 133 of the WDN 
of Limassol. The results of this pilot run are shown using sensor data from a 5 – day period 
between 19/11/2020 - 23/11/2020, however, any time period with available sensor data could 
have been selected. 

Initially, the algorithm requests the execution of hydraulic-state estimation for the desired period 

19/11/2020 - 23/11/2020 and acquires the calibrated hydraulic model of DMA 133 for that period. 

The inlet flow and pressure data which were used to create the hydraulic model for this period 

are shown in Figure 23. 

 

Figure 23: Measured inlet flow and pressure of DMA 133 for the simulation period 19- 23/11/2020 

 

The algorithm then connects to the online server which hosts the SCADA system, obtains the 

chlorine measurements for the same time period and performs data validation and outlier detec-

tion. Due to the constant calibration needed by chlorine sensors, the retrieved measurements 

were compared and calibrated based on historical data and measurements from other sensors 

located at the same main pipeline. The acquired data of the inlet chlorine concentration of DMA 

133 are visualized in Figure 24. 
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Figure 24: Measured inlet chlorine concentration of DMA 133 for the period 19/11/2020 - 23/11/2020. 

The inlet chlorine concentration (Figure 24) is augmented with the available water-quality model 

of the network which also contains the calibrated hydraulic parameters. The resulting model is 

simulated and the estimations are illustrated in the EPANET software interface (Figure 25). It can 

be observed that using the simulated inlet chlorine concentration (Figure 25, upper graph), the 

chlorine concentration at given downstream nodes (4, 165, 239, 491, 572) is estimated. Moreover, 

the simulation results can be used to visualize the chlorine profile in multiple locations in the 

network (Figure 25, lower graph), to gain insight into the chlorine decay process in the network. 
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Figure 25: EPANET model with a complete quality system state of DMA 133 for the simulation period 19-

23/11/2020. 

The final step of this methodology was to compare simulated and measured chlorine data from 
sensors located in the network and were not used in the creation of the water-quality model. 
Figure 26 shows a GIS map with the piping system of DMA 133 and the location of the installed 
chlorine sensors. 

In Figure 27 the measured (SCADA) and simulated (EPANET) chlorine concentration at nodes 
with installed sensors located at DMA 133 are presented. In all cases the estimated data are 
following the same pattern with the measurements, indicating the ability of the algorithm to predict 
the variation of chlorine across the network and throughout time. Regarding sensor “Chlor133P4” 
a difference between the measured and estimated data is observed meaning that either the actual 
sensor or a model parameter (bulk/wall coefficient or reaction rate) should be calibrated. Sensors 
“Chlor133P5” and “Chlor133P6” faced technical issues and were excluded from the process. 
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Figure 26: GIS map showing the location of the chlorine sensors (red) installed in DMA 133 and the loca-
tions where field measurements were taken (yellow) 

 

Figure 27: Measured (SCADA) and estimated (EPANET) chlorine from various sensors located in DMA 
133 for the simulation period 19-23/11/2020. 
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Beside the comparison between SCADA and EPANET estimated data, field measurements were 
taken from specific locations (Figure 26) in the network in order to evaluate the accuracy of the 
quality state estimation application. Four measurements were taken (Table 3) from each location 
on 20/11/2020 between 8:20 am – 12:52 pm. 

Table 3: Field chlorine measurements taken from several locations on DMA 133 on the 20/11/2020. 

 

In Figure 28, measured and estimated data of each location are presented. Nodes 239, 491, 657, 
510 and 306 show a relatively good fit between measurements and simulated results while in 
nodes 4, 165 and 572 a deviation is noticed. In this case as well, either the actual sensor or a 
model parameter (bulk/wall coefficient or reaction rate) on specific pipes should be calibrated. 

 

Figure 28: Measured (field measurements) and estimated (EPANET) chlorine from various locations in 
DMA 133 on 20/11/2020. 

 

Point Cl2 time 1 Cl2 time 2 Cl2 time 3 Cl2 time 4

DMA133

4 0.23 8:20 0.29 9:55 0.39 11:20 0.35 12:15

165 0.43 8:30 0.43 10:00 0.43 11:25 0.42 12:20

239 0.40 8:40 0.49 10:10 0.50 11:30 0.48 12:25

491 0.37 8:50 0.48 10:15 0.48 11:35 0.45 12:32

572 0.35 8:57 0.53 10:20 0.42 11:42 0.49 12:40

657 0.34 9:05 0.37 10:25 0.47 11:48 0.43 12:45

510 0.30 9:10 0.33 10:30 0.35 11:53 0.34 12:48

306 0.32 9:15 0.37 10:35 0.34 12:00 0.36 12:52

DMA133
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4.3 WDD Pilot 

A quality state estimation pilot was performed in the Water Development Department (WDD) net-

work using from a total of four (4) quality sensors which were installed across the network (Figure 

29). The sensors comprise of two (2) chlorine concentration sensors and two (2) multiparameter 

sensors measuring chlorine concentration, pH, temperature, pressure and conductivity, as illus-

trated in Figure 30.  

 

 

Figure 29: GIS map of the locations of chlorine and multi-parameter sensors in WDD network. 

 

 

Figure 30: Measurement time-series from a multi-parameter sensor installed in the WDD network 
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Figure 31: Chlorine concentration measurements from the “Tersefanou” multiparameter sensor for the 
period 24/08/2020 - 31/08/2020. 

For the estimation of the water-quality state of the pilot area, measurements from the “Tersefanou” 

multiparameter sensor were used, for the time period between 24/08/2020 - 31/08/2020. 

First hydraulic-state estimation of the pilot network is performed for the indicated period, as de-

scribed in Section 3, and the hydraulic model is calibrated.  

Then, the water-quality model is calibrated using the chlorine concentration measurements from 
the inlet of the network of the examined period. During the pilot phase period, water flow from 
Dekheleia (Anzio Camp Area) to Larnaca in the main pipelines. The chlorine sensor DAV_54A 
located at Anzio Camp Area thus the inlet point of the network was not operational that time. 
However, an estimation of the inlet chlorine concentration was achieved using measurements 
from the “Tersefanou” multiparameter sensor, downloaded from the SCADA system (Figure 31) 
and historical data. A water-quality model with calibrated hydraulic parameters and including the 
inlet chlorine concentration is created as an EPANET input file and presented in Figure 33.  

Using the EPANET model, a water-quality simulation of the network is performed by solving the 
network hydraulics and water-quality dynamics. The chlorine concentration at any part of the net-
work can then be estimated, e.g., Node n17 of the model as shown in Figure 33. A profile plot of 
the chlorine concentration in multiple locations of the network was also constructed showing the 
decay of chlorine in the network (Figure 33, lower graph). 
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Figure 32: Inlet chlorine concentration of WDD network between 24/08/2020 - 31/08/2020. 

 

Figure 33: Hydraulic and water quality model of the WDD network in EPANET, augmented with measure-
ments from the inlet chlorine measurements during the period 12-18/10/2020. 24-31/08/2020. 

 

The water-quality parameters measured from the multiparametric sensors were analyzed in order 
to identify correlations between them which would help add insight into the measured quantities. 
In Table 4 we can observe the time-series correlation of measured parameters, where it is iden-
tified that there is a high inverse relationship between the free chlorine in water and the water 
temperature. This is explained by the fact that the decay rate of chlorine increases when temper-
ature increases. Moreover, we observe a high correlation between temperature and conductivity, 
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which is explained by the fact that many salts present in water are more soluble in higher temper-
atures, thus increasing the water conductivity. A high correlation is also observed between con-
ductivity and chlorine because when chlorine is introduced into the water, the quantity of electro-
lytes or total dissolved solids in the water rises, which in turn raises the conductivity of the water. 
Finally, the pH levels of the water appear to have low correlation with the other parameters. 

 

Table 4: Time-series correlation of parameters measured from multiparametric sensors 

Parameters pH Conductivity Chlorine Temperature 

pH 100 % 0.007 % 18.53 % -18.40 % 

Conductivity 0.007 % 100 % -48.44 % 63.34 % 

Chlorine 18.53 % -48.44 % 100 % -74.29 % 

Temperature -18.40 % 63.34 % -74.29 % 100 % 

 

 

- PCA/t-SNE -> 2D  

 

4.4 Conclusions 

The results from the proposed methodology for quality state estimation shows a high accuracy 
between the estimated and measured data. The main objective which was to predict and estimate 
the variation and periodic pattern of pressures and flows during selected periods was achieved. 
Differences between measured and estimated data were noticed indicating that calibration of the 
following parameters must be carried out more often: 

• Chlorine sensors 

• Model pipe parameters (bulk and wall coefficients) 

Sensors should be monitored by the corresponding water authorities and preserved in a good 
condition. Model pipe parameters should be calibrated more often since the bulk and wall coeffi-
cients used in this methodology depend from the condition each pipe which can be estimated by 
the corresponding age and material. 

 

5 Detection and Localization of Leakages and Irregular Flow 

In this section three different methodologies for leakage diagnosis and detection of irregular flow 
are presented and applied on three different pilots. The methodologies and the conditions for 
which they are applied are described below and results from the pilots runs are presented. 

 

5.1 Leakage detection and localization using pressure measurements 

The leakage detection and localization using pressure measurements methodology is applied in 
DMA network setups of which the inlet flow and pressure are measured and additional pressure 
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sensors are installed in strategic locations inside the DMA. The algorithm is able to detect abnor-
mal pressure behavior which signals the existence of a leakage in the network and using infor-
mation about the topology and location of the pressure sensor is able to roughly determine the 
area in which the leakage may exist. The methodology is based on adaptively approximating the 
unknown, time-varying, weekly periodic difference between the measured and estimated pres-
sure at sensing locations, by updating the coefficients of Fourier series basis functions (Eliades 
and Polycarpou, 2012). 

 

5.1.1 Methodology 

The first step of the methodology is to use the hydraulic-state estimation methodology described 
in Section 3 to obtain a calibrated hydraulic-model of the network based on data received for the 
previous seven days (one week) of the day under examination. These data are considered to 
represent the “healthy” state of the system where no leakages exist. 

Since this model does not exactly predict the measured pressures (see Figure 14), an upper 
bound on the model uncertainty needs to be estimated in order to be used for fault-diagnosis. 
This is achieved by first generating the difference between the measured and estimated pressure 
of each sensor 𝑖 , hereby referred to as the error signal 𝑒𝑖

𝑤(𝑘) = 𝑝(𝑘) − �̂�𝑖(𝑘), for the one week 

period before the day of interest. 

By observing the error signal, we form the assumption that it exhibits weekly periodicity which 
may be caused by the pressure dependence of water demands during this one week period. Due 
to this assumption, a suitable approximation structure for providing an estimate of the error signal 
for each measurement �̂�𝑖

𝑤(𝑘) is a Fourier Series of the form: 

�̂�𝑖
𝑤(𝑘) = 𝛼0 + 𝑎1 sin(𝑘 𝑤𝑓) + ⋯ +  𝑎𝑛 sin(𝑛 𝑘 𝑤𝑓) + 𝛽0 + 𝛽1 cos(𝑘 𝑤𝑓) + ⋯ +  𝛽𝑛 cos(𝑛 𝑘 𝑤𝑓), 

with weekly periodicity, i.e., the period: 

𝑇𝑓 = 7 ⋅ 24 ⋅ 60/𝑡_ℎ , 

𝑤𝑓 =
2𝜋

𝑇𝑓
, 

where 𝑡ℎ is the measurement and hydraulic time-step in minutes. The Fourier Series coefficients 

are calculated by minimizing the square difference 𝑒𝑖
𝑤(𝑘) − �̂�𝑖

𝑤(𝑘). 

The error difference 𝑒𝑖
𝑤(𝑘) − �̂�𝑖

𝑤(𝑘) is then statistically analyzed to find the mean 𝜇𝑖 and standard 

deviation 𝜎𝑖. Typically, the error difference will have a zero mean. The upper bound on the error 

𝑒𝑖
𝑤(𝑘) − �̂�𝑖

𝑤(𝑘) is defined as five standard deviations from the mean, indicated here by �̅�𝑖 = 5𝜎𝑖. 

The condition for “normal” pressure readings 𝑝𝑖(𝑘) is then given by using the following adaptive 

threshold: 

|𝑒𝑖(𝑘) − �̂�𝑖
𝑤(𝑘) + 𝜇𝑖| ≤ �̅�𝑖  

|𝑝𝑖(𝑘) − �̂�𝑖(𝑘) − �̂�𝑖
𝑤(𝑘)+𝜇𝑖| ≤ �̅�𝑖 

The next step is to receive the pressure sensor data for the day of interest, which for better results 

should be the next day of the one-week period used to create the adaptive threshold. A test is 

then performed which assesses if, for all time steps and for all sensors, the pressure readings 

satisfy the normal operation condition. The pressure readings are considered healthy (leakage 

free) if: 

|𝑝(𝑘) − �̂�𝑖(𝑘) − �̂�𝑖
𝑤(𝑘) + 𝜇𝑖| ≤ �̅�𝑖, ∀𝑖, 𝑘 
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Using additional time-series analysis, an alert is created for every sensor that does not satisfy the 

above condition for at least 𝑁 number of time-steps during the examined period.  

The leakage localization step is then performed offline by using the information of the location 

of pressure sensors for which an alert was issued. Using the available hydraulic model, multiple 

leakage scenarios are simulated until the best leakage location and magnitude is found which fits 

the observed pressure variations. 

 

 

Function 5: Leakage detection using pressure measurements and Fourier series algorithm outline 

Platform Communication: 

• Communicates with EPANET database and retrieves the selected calibrated inp file 

• Communicates with SCADA database and retrieves the required data for the selected period 

and the selected DMA/network 

 

5.1.2 Application on the BattLeDIM competition 

The BattLeDIM competition was designed as a realistic benchmark for methodologies applied to 
networks with pressure sensors installed. The “L-Town” network used in this competition and the 
location of the pressure sensors is shown in Figure 34. 

Function: Leak_Pressure_Fοurier_Algorithm (model, data, M_timesteps) 

Inputs:  

@model: Calibrated water network model (.inp file) 

@data: Flow measurements received from SCADA 

@M_timesteps: Number of detection time steps for which an Alert is activated 

Output:  

@Alert: Node ID/sensor ID, measured-modelled pressure fault, datetime 

@plot: A graph of the network with the high-risk nodes/pipes highlighted 
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Figure 34: Location of 33 pressure sensors installed in "L-Town", BattLeDIM competition network 

 

The methodology described in Section 5.1 was tested on the BattLeDIM benchmark by first de-
fining a leakage of known characteristics, time and location to be simulated. The configuration file 
for producing the artificial data which will be provided by the virtual SCADA system and the loca-
tion of the leakage are illustrated in Figure 35. 

 

 

Figure 35: The BattLeDIM configuration file and the location of the artificial leakage on the network 

The first step of the methodology was to learn the uncertainty of the provided hydraulic-model of 
the network. The difference between estimated and measured pressures at sensor locations is 
calculated for the one week period prior to the leakage occurrence. The difference is then approx-
imated using Fourier Series (FS) as basis functions and by calculating the most suitable coeffi-
cients. The results of this procedure for the pressure sensor at node n506 is illustrated in Figure 
36 (Left). 
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The next step is to calculate an upper bound on the error of the approximation using FS and use 
this a threshold for the detection of leakages that may occur. The pressure sensor data are then 
received from the virtual SCADA system for the day when the leakage occurs. It can be observed 
from Figure 36 (Right) that the expected difference between measurements and estimation devi-
ates significantly for the sensor at n506 after the occurrence of the leakage. This deviation violates 
the defined threshold for this sensor, as illustrated in Figure 37, and thus the leakage is detected.  

The localization phase takes into account the threshold violations observed at all the pressure 
sensors. As it can be observed from Figure 38, a deviation which violated the threshold occurred 
at a number of pressure sensor locations in the network. By further analyzing the frequency and 
magnitude of threshold violations at each location and using hydraulic simulations an area of the 
network is identified as possibly containing a leakage, as shown in Figure 39, which indeed con-
tains the network pipe on which the leakage was induced. 

 

Figure 36: Left: Approximated (red line) and actual (blue line) difference between measured and estimated 
pressure of Node n506 for a one-week period before the leakage. Right: The same signals during the day 
of the leakage. 

 

Figure 37: The values of the error and the violated threshold for the pressure sensor at node n506 after 
the occurrence of the leakage 
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Figure 38: Approximated (red line) and actual (blue line) difference between measured and estimated 
pressures from 30 sensors during the day of the leakage. 

 

 

Figure 39: The area of the network identified to contain a leakage after analyzing the signals from all the 
pressure sensor. 

5.1.3 WBL Pilot 

The proposed algorithm is integrated in SmartWater2020 platform and activated every day. A 
table with alerts was created in the platform and is updated every day. An alert was triggered on 
“Pres136P3” sensor on 13th of November indicating abnormal pressure. Figure 40, retrieved 
through the algorithm, shows the weekly pressure variation signal of each senor based on previ-
ous week’s data. Figure 41 shows the pressure variation signal during the examined day com-
pared to the corresponding data of the same day of the previous week. As can be seen, the two 
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datasets regarding “Pres136P3” sensor are diverging. An alert is triggered, and the sensor loca-
tions are highlighted on the network map (Figure 42). 

 

Figure 40: Pressure weekly periodic signal of DMA 136 sensors between 6-12/11/2020 

 

Figure 41: Pressure periodic signal of DMA 136 sensors on 13/11/2020 
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Figure 42: Left: Sensor locations with abnormal pressure behavior. Right: GIS map showing the location 
of the pressure sensors installed in DMA 136 

Figure 43 presents the pressure measurements of sensor “Pres136P3” retrieved from SCADA 

system which indicate that on 13th of November a pressure drop from 70 m to 45 m took place. 

As explained by the WBL, the pressure dropped as a result of sensor calibration. 

 

 

 

Figure 43: Measured pressure of Pres136P3 sensor of DMA 136 for the period 7-18/11/2020. 

 

5.2 Irregular flow detection at consumer level AMRs 

In the Larnaca Water Board (LWB) pilot area, AMRs were installed which monitor a variety of 
consumers (industrial, commercial and residential) and provide measurements of the consumed 
water volume every one hour. Data are received every 12 hours as a package including all meas-
urements from AMRs. For these consumer-level measurements, a methodology was developed 
for identifying irregular flow which may be due to a number of reasons such as leakage, abnormal 
consumption due to a social event or construction work, or even a forgotten running faucet. 

5.2.1 Methodology 

A real-time detection algorithm is developed which retrieves data of the past eight (8) days and is 
activated every 12 or 24 hours depending on the user settings. The data of the first 7 days serve 
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as “historical data” in order to create specific thresholds while the data of the 8th day to detect 
leakages during that day.  

As a first step, the algorithm calculates the minimum flow of each day of the “historical data” period 

of 7 days. In this case, due to the uniqueness of each consumer (some consumers represents 

industrial industries which operate for a specific period both during the day and night) the algo-

rithm estimates the minimum flow of the entire day and not just during the night time as it is 

common for leakage detection algorithms which assess the Minimum Night Flow (MNF).  

The second step is defining a threshold by computing the average and the standard deviation of 

the extracted minimum flow of the “historical data” period. The threshold is based on the following 

equation (Claudio et al., 2015):  

Threshold = MA +a*MSD; 

where 𝑀𝐴 is the average, 𝑀𝑆𝐷 is the standard deviation and a is a statistical quality metric for 

detection performance assessment (Farah and Shahrour, 2018). 

Finally, data are received for the “check-day”, or the 8th day of the examined data, and the mini-

mum flow is calculated. The minimum flow is compared with the threshold created in the previous 

step and sends a warning when this is violated, in which case a flow anomaly is detected. The 

warning includes the AMR ID, the minimum flow of the day and the time it was recorded.  

 

Platform Communication: 

• Communicates with SCADA database and retrieves the required data (AMR measurements) 

for the selected period and the selected DMA/network 

5.2.2 LWB  Pilot 

The proposed algorithm is integrated in SmartWater2020 platform and activated once a day when 
the data from AMRs are received. A table with alerts was created in the platform and is updated 
every day when data are received.  

Figure 44 illustrates an example of abnormal consumption in the LWB network. An alert was 
triggered on “water-meter 97” located at a public school showing that after the 1st of October 
abnormal consumption is detected. It is observed that the minimum consumption increased from 
approximately 45 m3/h to 1300 m3/h and remained at the same levels in the following days includ-
ing during the weekend when public schools are normally closed. Eventually, the consumption 
dropped back to normal level after 10 days. Based on information received from the LWB, the 
event that caused this abnormal consumption was either a faucet which was left running or a 
leakage which was subsequently fixed by the consumer. 
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Figure 44: Alert table and measurements received from “water-meter 97” AMR, during a period when an 
irregular flow is detected. 

 

In a second example (Figure 45) the minimum consumption of “water-meter 131” located also at 
a public school increased from approximately 10 m3/h to 145 m3/h on 30th of September. In this 
case, according to information gathered by LWB, the school was undergoing construction works 
during the examined week which may explains the increase in water consumption. 

 

Figure 45: Alert table and measurements received from “water-meter 131” AMR, during a period when an 
irregular flow is detected. 
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5.3 Irregular flow detection at utility supply level 

The volumetric measurements of a utility supply area of the WDD network were used to test a 
methodology which determines if there is a leakage in that area. The measurements are the inflow 
of the area water supply tank. The conversion of volume measurements to flow measurements, 
illustrated in Figure 46, reveal a switching behavior which is due to the switching of valve status 
(open/close) when the water in the tank goes below a certain level. 

5.3.1 Methodology 

 

5.3.2 WDD Pilot 

- ΑF for consumer tanks 

 

 

Figure 46: Water volume measurements from a supply area of the WDD network 

 

 

 

5.4 DEYAM Pilot  

 

5.4.1 Methodology 

This feature aims to detect abnormal behaviors and promptly generate alerts to system adminis-
trators. The reliability of alerts increases when data uncertainty is included in the analysis, due to 
the fact the sensor measurements are often unreliable and inaccurate.  

Ηaving calculated the individual uncertainties for all potential sources of uncertainty, the com-
bined typical uncertainty is given by 
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Figure 47: The process of quantifying data uncertainty. 

Multiplying the combined standard uncertainty by a parameter K, which is determined by the de-
sired confidence level of the Gaussian distribution, gives the final output in the process of quan-
tifying data uncertainty. 

As a next step, we examine the compliance of the processed data augmented by the correspond-
ing uncertainty against predefined normal operating limits. These limits are typically set empiri-
cally and can be related to environmental conditions or to the structural strength of the sensors. 
The following figure shows the different cases that arise during this examination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accordingly, the actions to be taken depending on the category of the warning, are shown below. 
For convenience, the warnings are divided into three categories based on their importance and 
validity. The smooth operation of the system is indicated in green, an orange alert indicates that 

𝑈𝑐(𝑦) =  √∑(
𝜕𝑓

𝜕𝑥𝑙
)2 𝑢2(𝑥𝑙)

𝐿

𝑙=1

 

Figure 48: predefined normal operating limits 
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there is a possibility of abnormal behavior given the uncertainty of the data, whilst a red alert 
indicates that an anomaly has been detected. 

 

 

Figure 49: Actions to be taken depending on the category of the warning 

The estimated alerts are further visualized in a simple and intuitive way, to facilitate fast decision 
making by the system operator, as shown below for the data provided by DEYAM. The visualiza-
tion module has been developed in Grafana combined with an SQL database. 

 

 

Figure 50: Estimated alerts developed in Grafana combined with an SQL database 
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5.5 Conclusions 

In this sector, 4 different methodologies of abnormal pressure and flow detection are applied on 
4 different case studies. The first methodology included the use of pressure measurements from 
pressure sensors installed in strategic locations inside the DMA. The proposed algorithm which 
is based on predicting the weekly periodic difference between the measured and estimated pres-
sure showed to be very efficient since it detected accurately the time and the area of a leakage 
using the BattLeDIM benchmark. Moreover, this algorithm showed capable of detecting abnormal 
pressure behavior in the WBL network. 

In the LWB pilot area, the proposed algorithm uses AMR measurements to identify irregular con-
sumption which may be due to a number of reasons such as leakage, abnormal consumption due 
to a social event or construction work, or even a forgotten running faucet. As shown before, this 
methodology worked perfectly since it detected various types of irregular consumption within the 
LWB water network.  

 

6 Pressure regulation for leakage reduction 

6.1 Methodology 

The following algorithm was developed as a pressure management tool which can be used even-

tually for leakage reduction. It is designed for DMA level water networks with one water source 

(one water input) which is regulated by a PRV. The algorithm calculates the optimal PRV setting 

at each time step by taking into consideration the daily consumption data and it is based on a 

trial-and-error methodology. The criterion for the selection of the optimal PRV setting is to achieve 

a minimum acceptable pressure in the water network/DMA during a selected time period.  

The PRV_setting algorithm is applied in leakage models (INP. file). The leakages are modeled as 
emitters which are associated with junctions and simulate the leakage flow through an orifice 
based on the following equation (Rossman, 2000): 

𝑞 = 𝐶 𝑝𝛾 

where q = flow rate, C= discharge/emitter coefficient, p=pressure and γ= pressure exponent (usu-
ally 0.5). Since the total inflow and the actual consumption of each DMA are known, the leakage 
flow is calculated. Following, the emitter coefficient is estimated based on the average leakage 
flow and pressure of each consumption junction (as a first step, the leakages are applied only in 
consumption junctions). The initial base demands which represented the entire inflow are reduced 
in order to represent only the actual consumption (Function 6). 

Function: Set_EmitterCoef(Model, ActualConsumption) 

Inputs:  

@model: Water network model (.inp file), weekly consumption patterns, time duration and time 
step 

@RealConsumption: Actual Consumption (m3/h)  

Output:  

@Leakage_model: Water network model (.inp file) including leakages as emitters 

 

Function 6: Outline of water model development including leakages 
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The user selects a range of input pressures which are assigned to the PRV and states the desir-

able optimal pressure range or the minimum acceptable pressure of the network. For example, 

the available pressure range for the PRV is set to 40 – 60 m (this pressure range is usually based 

on previous PRV settings or the knowledge of the user regarding the operation of the network) 

and the minimum acceptable network pressure is 20 m. The algorithm estimates the control set-

ting of the PRV for each time step which must be between 40 – 60 m and will achieve at least 20 

m pressure in the network (all nodes). The control setting which achieves network pressure clos-

est to 20 m is selected. In case, the desirable network pressure cannot be achieved a warning 

message is issued. 

Monte Carlo simulations are also integrated in the algorithm in order to take into consideration 

demand, diameter, pipe length and roughness uncertainties. For computational reasons the input 

pipe and the PRV of the DMA are simulated as a Reservoir. 

The required input data for the PRV_setting algorithm are stated below:  

• Calibrated leakage - hydraulic model of the DMA under study (EPANET input file). It in-
cludes the topology and the parameter values of the network (roughness, length and di-
ameter for pipes; positions and characteristics for valves; demand patterns for junctions). 
The calibrated hydraulic model is created using the “Hydraulic State Estimation” algorithm. 

• The minimum acceptable network pressure 

• The proposed PRV pressure range 

  

The output of the PRV_setting algorithm are stated below:  

• A vector of PRV settings which can appear in a table and can be computed on demand for 
a specific period (e.g. a period of one week with a 30 minute time step thus a vector of 336 
PRV settings). 

• The optimized EPANET network file with the new PRV settings. 

• The water losses before and after the optimization 

• The reduction of CO2 emissions and water cost. 

  

Function: PRV_setting(model, iters, hmin, hmax, Pmin, Pmax) 

Inputs:  

@model: Water network model (.inp file), weekly consumption patterns, time duration and time 
step 

@Iters: Number of Monte Carlo simulations  

@Pmin: Minimum acceptable network pressure  

@Pmax: Maximum acceptable network pressure  

@hmin,hmax: Range of proposed PRV settings 

Output:  

@OptimalPRVSettings: PRV setting for each time step 
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@Optimized_model: Inp. file with new PRV settings 

@TotalVolumeLeakage_1: Leakage volume (m3) for initial model. 

@TotalVolumeLeakage_2: Leakage volume (m3) for optimized model. 

@CO2Emmision: CO2 emissions reduction (kg CO2) 

@SavedWaterCost: Cost reduction (€) 

@SavedWaterVolume: Water volume reduction (m3)  

Function 7: Optimal PRV setting selection algorithm outline 

6.2 WBL Pilot 

The proposed methodology was applied at the DMA 131 of the WDN of Limassol. The inlet flow 

of DMA 131 varies between 40-90 m3/h with a minimum night flow close to 37-40 m3/h and the 

inlet pressure varies from 45 to 50 m. In Figure 51 and Figure 52 the flow and pressure of DMA 

131 during an average week (20/7/2020 – 26/7/2020) are presented, respectively. The objective 

was to reduce to inlet pressure from 45-50 m to 40-43 m and examine the changes on the water 

flow. The key performance indicators (KPIs) were used in order to estimate the impact and this 

experiment: 

1. Average Water Cost (€/m3): 0.8 

2. CO2 Emission (kg CO2/m3): 0.137 

 

  

Figure 51 - Inlet Flow of DMA 131  
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Figure 52 - Inlet Pressure of DMA 131 

  

6.3 Application of methodology on a digital twin of the network 

The application of the proposed methodology on a simulation of the network model which was 

calibrated using real data was performed in three steps, described below. 

6.3.1 Step 1: Hydraulic model calibration 

The ‘hydraulic state estimation’ algorithm presented in previous sections was utilized and a cali-

brated water model for the period between 20/7/2020 – 26/7/2020 was obtained (Figure 53). No-

tice that the simulated inlet flow and pressure match the corresponding measurements retrieved 

through the installed sensors (Figure 53). 

 

Figure 53 - Calibration of the DMA 131 network model using measurements 
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6.3.2 Step 2: Incorporating background leakages in the model 

The second step of this methodology is to create a water network model including leakages. 

According to historical data and information from the WBL it was estimated that the actual average 

consumption of this area is approximately 45 m3/h while the leakages are estimated to 20-30%. 

With this information, the calibrated model (Figure 53) was re-calibrated based on (Function 1)  

and a model including both the actual consumption and leakages was developed (Figure 54). Due 

to a variety of uncertainties such as the actual consumption and the varying leakage percentage 

throughout the day, a slide difference between the night flow of the two models is observed. How-

ever, this does not affect the overall aim of this pilot which is to show how the inlet flow is affected 

by pressure control.   

 

Figure 54 - DMA 131 system inflow when incorporating leakages into the model 

 

6.3.3 Step 3: Application of pressure control algorithm 

After obtaining the “leakage model”, the pressure control algorithm (Function 2) is ready for use. 

The user introduces the required input data, as illustrated in  

• minimum requested inlet pressure (m) – PRV setting  

• maximum requested inlet pressure (m) – PRV setting  

• minimum acceptable pressure (m) – Network pressure guideline 

• maximum acceptable pressure (m) – Network pressure guideline 

• Average Water Cost (€/m3) - KPI 

• CO2 Emission (kg CO2/m3) - KPI 

• Number of Monte Carlo Simulations – Simulation Option 
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Figure 55 – Input parameters of pressure control algorithm 

  

The results of the simulated pilot phase are presented in Figure 56 and Figure 56. Figure 56 

shows the total flow, the actual consumption and the leakage flow of the selected DMA before 

and after the application of pressure control. According to the simulated results the minimum 

night flow is reduced by approximately 5 m3/h due to the same reduction in the background 

leakages. The corresponding inlet pressure is set to 40 m during the entire simulation period. This 

reduction is translated in terms of the proposed KPIs (Table 5) as follows: 

• 238 m3 of water saved per week 

• 190 € saved per week 

• 32 kg CO2 reduction per week 
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Figure 56 - Total and leakage flow of a DMA with and without pressure control. 

  

Table 5: Key performance indicators of pressure control methodology. 

Inflow volume (m3) Leakage volume (m3) 
Saved Wa-

ter (m3) 
Saved 

Cost (€) 
CO2 reduc-

tion (kg CO2) Without control With control Without control With control 

11109 10871 3563 3325 238 190 32 

  

6.4 Pilot phase: Application on the actual water distribution system 

On 2/9/2020 the WBL proceed to the pilot phase of this methodology by reducing the inlet pres-
sure of DMA 131 from 45-50 m to 40-43 m. The results of this application were noticed immedi-
ately. The minimum night flow was reduced by 10 m3/h from 37 m3/h to 27 m3/h. This can be 
observed in Figure 57, which show the inlet pressure and flow of DMA 131 from 28/8/2020 to 
7/9/2020 while Figure 58 and Figure 59 present the flow and the pressure during the following 
week.  
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Figure 57 - Reduction of minimum night flow in DMA 131 when applying the pressure control algorithm 

 

Figure 58 - DMA 131 Inflow during the week when the pilot was performed 

 

Figure 59 - DMA 131 Inlet pressure during the week when the pilot was performed 
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6.5 Conclusions 

The pressure regulation methodology using PRVs which is developed and presented in the pre-
vious section showed that it can be a very helpful and efficient tool regarding the reduction of 
background leakages. The first part of the pilot where a digital twin of the network was used 
showed that a reduction of 5 m3/h during the night period can be achieved with this methodology. 
The results from the application of this method on the actual network were even better since a 10 
m3/h reduction on the minimum night flow from 37 m3/h to 27 m3/h was achieved. Initially, this 
indicates that model calibration is needed for the first part of the pilot. However, the most important 
outcome is that this methodology can be used as leakage reduction tool.  

The results can be considered far more promising and encouraging if someone considers that 
with that 5 m3/h night flow reduction the water utilities can save up to 238 m3 of water, 190 € and 
32 kg CO2 per week. 

 

7 LoRaWAN Performance Evaluation 

 

7.1 Methodology 

In order to evaluate the performance of a LoRaWAN deployment a series of metrics may be used. 
The metrics are based (a) on the physical layer properties which are specific to the LoRa protocol, 
such as data rate, number of receiving gateways per node, and (b) on the physical layer properties 
in general, such as received signal strength, SNR, etc. 

Moreover, the simulated coverage vs the real one is going to be compared in terms of RSS per 
geographical point and gateway connectivity. 

Statistical analysis is going to be performed in all the available data. The available data include a 
per packet received at the LoRaWAN server record which has 21 attributes. We concentrate on 
the following five attributes which provide meaningful information regarding the physical layer 
performance of the LoRaWAN infrastructure, Device name, Gateway name, Data Rate, SNR, and 
RSSI. 

We decided to calculate, statistically analyze, and visualize the following series of data, which will 
provide the most essential feedback regarding the performance of the LoRaWAN deployment: 

1. Number of AMR positions without predicted coverage 
2. Average received signal strength difference per AMR position 
3. Number of communicating AMRs 
4. Number of Packets per AMR 
5. Number of Packets per Gateway 
6. Number of Gateways per AMR 
7. Distance of Gateways per AMR 
8. Received Signal Strength 
9. Signal to Noise Ratio 
10. Data Rate distribution 

 

Finally, we have depicted in the cumulative distributions the 90th percentile, such as to have an 
instant view of the performance for most AMRs. 
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7.2 LWB Pilot 

The pilot of the Larnaca Water Board included the installation of 10 LoRaWAN gateways and 360 
AMRs-water meters in the wider metropolitan area of the city of Larnaca in Cyprus. In Figure 60 
the installation points of the AMRs are depicted. The main goal was set to be the LoRa network 
coverage of all the AMRs. Secondly the distribution of the gateways should be such that the 
majority of Larnaca’s metropolitan area is covered and at the same time a significant overlap of 
the coverage of each gateway exists for redundancy.  

 

Figure 60: Installation points of AMRs / LoRa end nodes 

After the installation of all the gateways and the AMRs and the proper tunning of the system, a 
continuous recording of all the received packets information was established. Therefore, from 
June 2020 up to almost end of November 2020 (a period of almost 6 months), a total of 944255 
packets’ information has been recorded. This amount of data provides a representative indication 
of the LoRaWAN’s infrastructure performance. 
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The installation points of the gateways were chosen from a selection of available building roof-
tops. The available rooftops were convenient to use, but LoRaWAN-wise they didn’t have any 
strong or desirable advantage. The final installation points were the ones that provided the maxi-
mization of coverage, based on extended simulations.  

For the coverage simulation we used two different propagation models, (a) Ericsson and (b) 
COST Hata. Both the terrain layout and the buildings have been taken into account. Various 
parameters of the models were chosen such as to have a more pessimistic prediction of the 
coverage. Depicted in Figure 61 are the simulation results projected on the Google Earth map of 
Larnaca metropolitan area. 

 

  

Figure 61: Simulated LoRaWAN coverage of the two propagation models [Ericsson left, COST hata right] 

 

7.2.1 Number of AMR positions without predicted coverage 

Based on the traces we verify the diversion of the simulated coverage compared against the real 
world measurements. The number of links observed are 1406, because each AMR may have 
connections with multiple gateways. Out of the 1406 links the simulation has predicted only the 
485/522 (Ericsson/COST Hata model respectively). This shows that the simulation is rather pes-
simistic in terms of coverage area, which was expected due to the values used for various pa-
rameters of both models. 

 

7.2.2 Average received signal strength difference per AMR position 

For the links that have been predicted by the simulation the average difference from the real 
measurements is, respectively for Ericsson/COST Hata model, 15.7/6.2 dB. 

 

7.2.3 Number of communicating AMRs 

In the field 346 out of the 360 AMRs have been installed. Out of the 346 installed 328 have send 
packets from June to November (about 95%). There are less AMRs communicating the last 
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month, but unfortunately it has not been investigated whether there is a problem in the communi-
cation or device malfunction/vandalism. 

 

7.2.4 Number of Packets per AMR 

The expected number of packets per AMR is 64 for the plain water meters and 720 for the digi-
tal ones, over a 30 days period, thus over 384 and 4320 packets respectively for 6 months. The 
results show quite larger numbers than these, due to the fact that the same packets are re-
ceived from more than one gateway, for a large percentage of the AMRs. We ‘ve chosen to use 
the data before the de-duplication process in order to have a better overview. As shown in Fig-
ure 62 the 90% of AMRs have over 600 packets, over 50% more than the expected ones. 

 

Figure 62: Cumulative distribution of the number of received packets per AMR 

 

7.2.5 Number of Packets per Gateway 

In Figure 63 we represent the distribution of the received packets to each gateway. It is obvious 
that there are a few gateways [1,2,3,10] that have captured the majority of the packets. These 
gateways are either better placed or closer to more AMRs. A good example of the importance of 
placement/location are the gateways 10 and 7, although they are close to each other they have 
a large difference in the number of the received packets, because gateway 10 is placed higher 
than gateway 7 [52 vs 33 m above sea level - 45 vs 15 m above ground level]. 
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Figure 63: Number of packets received by each Gateway 

 

7.2.6 Number of Gateways per AMR 

As LoRaWAN permits the concurrent reception of packets by multiple gateways, providing es-
sentially redundancy of the form of immediate failover, we observe in Figure 64 that the 90% of 
the AMRs is received by at least two gateways. Four or more gateways cover the 50% of the 
AMRs. 

 

Figure 64: Cumulative distribution of the number of Gateways receiving packets per AMR 

7.2.7 Distance of Gateways per AMR 

Another interesting statistical result is the distribution of distances between the AMRs and their 
respective receiving gateways. Six kilometers or less is the distance for the 90% of AMRs, but 
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there is a small percentage of AMRs that achieve reception to over 10 km of distance, which is 
quite remarkable taking into account that they are placed just few centimeters above ground, 
Figure 65. 

 

Figure 65: Cumulative distribution of receiving Gateways' distance from AMRs 

7.2.8 Received Signal Strength distribution 

The average received signal strength per AMR has been calculated and in Figure 66 the distri-
bution is depicted. The average received power of 90% of all packets is -112 dBm or better 
(Figure 67), with an average close to -100 dBm and a standard deviation of about 7 dBm per 
AMR. 

 

Figure 66: Distribution of the average received signal strength (left) and the respective standard devia-
tion (right) per AMR 
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Figure 67: Cumulative distribution of received signal strength of all packets 

7.2.9 Signal to Noise Ratio distribution 

The Signal to Noise ratio (SNR) cumulative distribution in Figure 69 shows that 90% of the re-
ceived packets have an SNR of -21 dB or better. Less than 20% of the packets has a positive 
SNR, which shows the robustness of the physical layer, as most of the competitive technologies 
require a positive SNR for reception. 

 

Figure 68: Distribution of the SNR of all received packets 
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Figure 69: Cumulative Distribution of SNR of all received packets 

7.2.10 Data Rate distribution 

The data rate distribution in Figure 71 shows that the majority of the packets are received at the 
lowest data rate (DR0), which is expected from the long distances and the low SNRs. Also, 
there is a significant percentage at data rate 5 (Figure 70), for the AMRs that are close to a 
gateway. 

 

Figure 70: Distribution of Data Rates of all received packets 
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Figure 71: Cumulative distribution of Data Rates of all received packets 

 

 

7.3 Conclusions 

Results from the operation of the LWB’s LoRaWAN infrastructure demonstrate the advantages, 
the robustness, the performance, and the suitability of the specific technology for the remote 
monitoring of large-scale water networks. The installation locations of the gateways could have 
been placed at more optimal locations, however the infrastructure remains efficient and ready to 
support a larger deployment of AMRs in the metropolitan area of Larnaca. 

 

 

 

 

 

 

 

 


